
J. Fluid Mech. (2006), vol. 557, pp. 135–144. c© 2006 Cambridge University Press

doi:10.1017/S0022112006009827 Printed in the United Kingdom

135

On the evolution of eddies in a rapidly
rotating system

By P. A. DAVIDSON1, P. J. STAPLEHURST1

AND S. B. DALZIEL 2

1Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK

2Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Rd, Cambridge CB3 0WA, UK

(Received 10 November 2005 and in revised form 28 February 2006)

The formation of columnar eddies in a rapidly rotating environment is often attributed
to nonlinear processes, acting on the nonlinear time scale l/|u|. We argue that this
is not the whole story, and that linear wave propagation can play an important
role, at least on the short time scale of Ω−1. In particular, we consider the initial
value problem of a compact blob of vorticity (an eddy) sitting in a rapidly rotating
environment. We show that, although the energy of the eddy disperses in all directions
through inertial wave propagation, the axial components of its linear impulse and
angular momentum disperse along the rotation axis only, remaining confined to the
cylinder which circumscribes the initial vortex blob. This confinement has a crucial
influence on the manner in which energy disperses from the eddy, with the energy
density within the tangent cylinder remaining much higher than that outside (i.e.
decaying as t−1 inside the cylinder and t−3/2 outside). When the initial conditions
consist of an array of vortex blobs the situation is more complicated, because the
energy density within the tangent cylinder of any one blob is eventually swamped by
the radiation released from all the other blobs. Nevertheless, we would expect that
a turbulent flow which starts as a collection of blobs of vorticity will, for times of
order Ω−1, exhibit columnar vortices, albeit immersed in a random field of inertial
waves. Laboratory experiments are described which do indeed show the emergence of
columnar eddies through linear mechanisms, though these experiments are restricted
to the case of inhomogeneous turbulence. Since the Rossby number in the experiments
is of the order of unity, this suggests that linear effects can still influence and shape
turbulence when nonlinear processes are also operating.

1. Introduction
We are interested in rapidly rotating turbulence in which the fluctuating velocity

|u| is small, |u| � Ωl, where Ω is the bulk rate of rotation and l a suitable length
scale. Such turbulence is known to be characterized by the growth of columnar eddies.
Our primary concern is unforced, decaying turbulence in which the flow evolves from
some specified initial state. Inertial waves play a central role in such flows, and indeed,
when u · ∇u is neglected by comparison with the Coriolis force, 2u × Ω , the motion
is just a spectrum of linear inertial waves. The frequency � and group velocity cg of
these waves are dictated by the initial distribution of the wavevectors k according to
(Greenspan 1968),

� = ±2(Ω · k)/|k|, cg = ±2k × (Ω × k)/|k|3. (1.1)
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Since the initial distribution of k is often chosen to be random, it is by no means clear
that there should be a preference for wave packets to propagate along the rotation
axis, and thus there is no particular reason to expect columnar structures to form.
Nevertheless, it seems that, under certain conditions, columnar eddies aligned with Ω

can indeed emerge (Hopfinger, Browand & Gagne 1982; Bartello, Metais & Lesieur
1994; Godeferd & Lollini 1999).

When |u| < Ωl, and t remains of order Ω−1, it is natural to seek an explanation for
this process in terms of linear wave theory, since u · ∇u is small and there is no time
for the cumulative effects of weak nonlinearity to influence the flow. However, many
studies have suggested that anisotropy in the eddy structure emerges as a result of
weak nonlinear interactions acting over the nonlinear time scale l/|u|, as summarized
in, for example, Cambon & Scott (1999) and Cambon (2001). Typically, these theories
decompose the flow into a sea of inertial waves and investigate their near-resonant
nonlinear interaction. The hypothesis is that, over the long time scale, l/|u|, the
near-resonant triad interactions can cause anisotropy, with a preferential transfer of
energy into modes with horizontal wavevectors. There are two powerful arguments in
favour of nonlinearity. First, when viscosity is neglected, the linearized equations are
reversible, in the sense that they are unchanged under a reversal of u. So for every
initial condition which takes the eddy morphology from an isotropic state to an
anisotropic one, say u(1) → u(2), we can find another initial condition which does the
reverse, i.e. −u(2) → −u(1). Thus wave propagation cannot provide some universal,
systematic mechanism for inducing anisotropy from arbitrary initial conditions. Of
course, the nonlinear equations are also formally reversible in the inviscid limit, in
the sense that they are unchanged under a reversal of u, Ω and t . However, the chaos
associated with nonlinearity can, in effect, provide an arrow of time. The second
argument in favour of nonlinearity is that, for homogeneous turbulence, the spectrum
tensor Φij shows no systematic tendency to develop anisotropy when u · ∇u is
suppressed. The proof of this is straightforward. In the linear regime, in which u · ∇u
is neglected by comparison with 2u × Ω , we have

∂2û/∂t2 + � 2û = 0, (1.2)

where û is the Fourier transform (in space) of u, � is given by (1.1), and we
have neglected viscosity. Let the initial distribution of û(k) be û(0)(k). Noting
that, in the linear regime, the vorticity equation ∂ω/∂t = 2Ω · ∇u requires
∂(k × û(0))/∂t = � |k|û(0), (1.2) may be integrated to give

û(k, t) = û(0) cos �t −
(
k × û(0)

/
k
)
sin �t. (1.3)

From this we can calculate Φij , the Fourier transform of the two-point correlation
〈uiu

′
j 〉:

2Φij = Φ
(0)
ij + k−2εipqεjmnkpkmΦ (0)

qn +
[
Φ

(0)
ij − k−2εipqεjmnkpkmΦ (0)

qn

]
cos 2�t

− k−1
[
εimnkmΦ

(0)
nj + εjpqkpΦ

(0)
iq

]
sin 2�t. (1.4)

Equation (1.4) tells us that Φii = Φ
(0)
ii , so that the energy spectrum, E(k), cannot

evolve in the linear regime. Moreover, in the particular case where Φ
(0)
ij is isotropic, we

have the stronger condition Φij = Φ
(0)
ij . So, for an inviscid fluid with isotropic initial

conditions, anisotropy of Φij cannot develop as a result of purely linearized dynamics.
In fact it is possible to relax the assumption of isotropy. For example, for turbulence
which is statistically axisymmetric about Ω = Ω êz, the tensor Φij takes the form

Φij = (F + G)[k2δij − kikj ] − G
[
k2

� δij + k2λiλj − k�(λikj + λj ki)
]
, (1.5)
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where F and G are even functions of k and k�, and λ is a unit vector parallel to Ω .
From (1.4) and (1.5) we see that

Φ� = Φ
(0)
� +

k4
⊥

2k2
G(0)[1 − cos 2�t], Φ⊥ = Φ

(0)
⊥ − k4

⊥
2k2

G(0)[1 − cos 2�t], (1.6)

where Φ� = Φzz, Φ⊥ = Φxx + Φyy and G(0) characterizes the initial anisotropy of the
turbulence. For axisymmetric turbulence, then, the most that we can expect from
linearized dynamics is an oscillation in Φ⊥ and Φ�.

These arguments suggest that the appearance of columnar eddies in decaying,
rotating turbulence is indeed a direct result of nonlinear interactions. However, since
the study of third-order statistics by Gence & Frick (2001), it has been known that
the second argument above is flawed, because these higher-order statistics are shaped
by linear processes. The key reason why second-order (one-time) statistics are blind
to the effects of linear waves is that all phase information is lost when we form an
auto-correlation, and so all phase information is absent in the diagonal components
of 〈uiu

′
j 〉 and Φij . (To recover phase information we must move to two-time, second-

order statistics. See, for example, Cambon & Jacquin (1989).) Thus it is possible for
a flow to evolve as a result of changes in the phases of the various Fourier modes,
and this evolution will not be detected in the energy spectrum. Such changes in
phase are precisely what occurs when energy is moved from place to place by linear
wave propagation, i.e. energy redistribution by linear wave propagation is all about
co-ordinating the phases of the various Fourier modes present, so that the location
in space where the modes reinforce each other, rather than cancel, propagates with
the group velocity (Lighthill 1978). In classical (non-rotating) turbulence, the phase
information is essential to the emergence of coherent structures, and we contend that
columnar eddies play a similar role in the rotating system.

This suggests that there is the possibility that, for certain classes of initial conditions,
rapidly rotating flows evolve systematically on the fast time scale of Ω−1 as a result
of linear inertial waves. Thus, just as linear processes are crucial in rapidly strained
turbulence (cf. rapid distortion theory), so there is the possibility that linear waves can
help shape rotating turbulence. Such a process cannot change isotropic turbulence
into, say, two-dimensional turbulence, since Φij is fixed by Φ

(0)
ij , but it might allow

distinctive coherent structures to develop. We now give an example of a class of initial
conditions in which elongated structures emerge on the fast time scale through linear
wave propagation, without the need for nonlinearity. We start by considering the
evolution of a single, isolated eddy and then move to the case of turbulence emerging
from a sea of randomly orientated vortex blobs.

2. The evolution of a single eddy at low Rossby number
2.1. General concepts

Consider an initial condition consisting of a compact blob of vorticity, ω, of arbitrary
complexity sitting near the origin. Of course, for t > 0, energy will radiate away from
the blob with a radiation pattern set by the initial distribution of wavevectors. In
general, then, energy will disperse in all directions. However, we shall now show that
this dispersion is (nearly) always biased towards the rotation axis. We start by noting
that the linearized equation of motion for a homogeneous inviscid fluid demands
that the angular momentum density, measured relative to an arbitrary origin, evolves
according to

∂(x × u)/∂t = 2x × (u × Ω) + ∇ × (px/ρ), (2.1)
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whose axial component can be written in the form

∂(x × u)z/∂t = −∇ · [(x2 − z2)Ωu] + [∇ × (px/ρ)]z. (2.2)

Let us integrate this over a cylindrical volume, centred on the z -axis, of radius R and
infinite length. The pressure term drops out, because there is no net pressure torque
acting on the cylinder, while the first term on the right-hand side integrates to zero
because of continuity. It follows that the axial component of angular momentum, Hz,
in such a cylinder is conserved, essentially because linear waves cannot support a net
horizontal flux of axial angular momentum. Moreover, provided the cylinder encloses
all of the vorticity initially present in the blob, Hz is equal to the angular impulse of
the fluid:

Hz =

∫
VR

(x × u)z dV =
1

3

∫
V∞

(x × (x × ω))z dV. (2.3)

(This follows from integrating the identity

6(x × u) = 2x × (x × ω) + 3∇ × (x2u) − ω · ∇(x2x) (2.4)

over the cylindrical volume VR .) Consequently, at t = 0, the axial component of
angular momentum is effectively contained within the cylinder which circumscribes
the initial vortex blob, there being zero net angular momentum outside the cylinder.
Since Hz is conserved within each annulus centred on the z -axis, it follows that the net
axial component of angular momentum is confined for all time to the cylinder which
circumscribes the initial vortex blob. Thus, while energy can disperse in all directions,
the z -component of angular momentum can only disperse along the rotation axis.

Similarly, noting that the linearized vorticity equation, ∂ω/∂t = 2Ω · ∇u, may be
rewritten in the form

∂(x × ω)/∂t = 2(u × Ω) + 2Ω · ∇(x × u), (2.5)

and integrating this over the volume VR , it may be shown that the axial component
of linear impulse, Lz = 1

2

∫
(x × ω)z dV , is also confined to the cylinder which

circumscribes the initial vortex blob. (We shall refer to this cylinder as the tangent
cylinder.)

Now suppose that the initial vortex size is ∼ δ. Then the group velocity of the
fastest inertial waves is of the order of ∼ Ωδ and so, after a time t, Lz and Hz

become dispersed over a cylindrical region of radius δ and length ∼ Ωδt . Since,
in this inviscid system, the axial components of the linear and angular impulse are
conserved, the characteristic velocity on the axis can fall no faster than |u| ∼ (Ωt)−1.
The energy of the eddy, on the other hand, disperses in all directions filling a volume
of order (Ωδt)3 after time t. Since the total energy is also conserved, the typical
velocity outside the tangent cylinder must fall at the faster rate of |u| ∼ (Ωt)−3/2.
These two decay laws, |u| ∼ (Ωt)−1 and |u| ∼ (Ωt)−3/2, will be illustrated shortly
by a simple, explicit example. In summary, then, the confinement of Lz and Hz to
the tangent cylinder has a crucial influence on the manner in which energy disperses
from an isolated eddy, with the energy density within the tangent cylinder remaining
higher than that outside the cylinder.

2.2. A simple example

We can illustrate all of this by considering the trivial case of an eddy which has
axial symmetry. When the flow is axisymmetric we can divide u into azimuthal and
poloidal components. In (r, θ, z) coordinates we have

u = (Γ/r)êθ + ∇ × [(ψ/r)êθ ], (2.6)
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where Γ is the angular momentum and ψ the Stokes streamfunction. The linearized
inviscid vorticity equation then yields

∂Γ

∂t
= 2Ω

∂ψ

∂z
,

∂

∂t
(rωθ ) = 2Ω

∂Γ

∂z
, (2.7)

where ∇2
∗ψ = (r∂/∂r)(r−1∂ψ/∂r) + ∂2ψ/∂z2 = −rωθ , ∇2

∗ being the Stokes operator.
These may be combined to give the wave-like equation

∂2

∂t2
∇2

∗Γ + (2Ω)2
∂2Γ

∂z2
= 0. (2.8)

This is most readily solved by introducing the Hankel-cosine transform

ûθ =
1

2π2

∫ ∞

0

∫ ∞

0

ruθJ1(krr) cos(kzz) dr dz, (2.9)

where J1 is the usual Bessel function (Davidson 1997). Adopting the initial conditions
ûθ = û

(0)
θ and ψ = 0, we find ûθ = û

(0)
θ cos �t , from which

uθ = 2π

∫ ∞

0

∫ ∞

0

kr û
(0)
θ J1(krr)[cos(kz(z − 2Ωt/k)) + cos(kz(z + 2Ωt/k))] dkr dkz. (2.10)

We now choose a simple initial condition for uθ in the form of a Gaussian eddy:

u
(0)
θ = Λr exp[−(r2 + z2)/δ2], (2.11)

where δ is the characteristic eddy size and Λ an angular velocity. Equation (2.10) then
yields

uθ =
Λδ5

8π1/2

∫ ∞

0

k2
r exp[−k2

r δ
2/4]J1(krr)I (kr ) dkr, (2.12)

where

I (kr ) =

∫ ∞

0

exp
[
−k2

z δ
2/4

]
[cos(kz(z − 2Ωt/k)) + cos(kz(z + 2Ωt/k))] dkz. (2.13)

Integrals (2.12) and (2.13) can be evaluated numerically and a typical snapshot of the
flow, at 2Ωt = 20, is shown in figure 1(a) for z > 0. Although energy disperses in all
directions, the energy density is clearly highest near the rotation axis, as anticipated
above. The main characteristics of the solution (2.12), (2.13) may be exposed using
a simple approximation. It is readily confirmed that, for this simple Gaussian eddy,
the power spectrum for û

(0)
θ is dominated by wavevectors in the vicinity of kz ≈ 0,

kr ∼ δ−1. So a reasonable approximation to integral (2.13) is obtained by putting
kz/k ≈ kz/kr in the argument of the cosines. The integral I can then be evaluated
exactly and we find

uθ ≈ Λδ

∫ ∞

0

κ2e−κ2

J1(2κr/δ)

[
exp

[
−

(
z

δ
− Ωt

κ

)2
]

+ exp

[
−

(
z

δ
+

Ωt

κ

)2
]]

dκ,

(2.14)

where κ = krδ/2. This approximation to the flow is shown in figure 1(b) for 2Ωt = 20.
Although (2.14) somewhat underestimates the radial dispersion of energy, because
it is biased towards horizontal wavevectors, it captures reasonably accurately the
evolution of the primary structure near the axis.

Equation (2.14) has the advantage over (2.12) and (2.13) in that it is particularly
easy to interpret. It tells us that kinetic energy disperses primarily in the ± z -
directions with the energy corresponding to wavenumber kr located in the vicinity
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Figure 1. The evolution of an initially spherical vortex into a pair of columnar eddies by
linear wave propagation. (a) The exact solution (2.12), (2.13) at 2Ωt = 20. (b) The approximate
solution (2.14) at 2Ωt = 20. Dotted lines represent negative swirl.

of z ∼ ±2Ωt/kr = ±δΩt/κ . Note that the integral is dominated by contributions in
which κ ∼ 1, and that the energy corresponding to κ = 1 finds itself located near
z ∼ ±δΩt . Thus kinetic energy disperses along the z -axis, forming two columnar
structures with centres located at z ∼ ±δΩt and length scales which grow as lz ∼ δΩt .
Of course, this is precisely what we would expect from a simple group velocity
argument based on (1.1).

The precise form of (2.14) at large times is readily found by insisting that the
arguments in the exponential functions remain of order unity as Ωt → ∞. Consider
the location z = δΩt . Then the only contribution to (2.14) comes from the wavevectors
κ = 1 ± O((Ωt)−1), and so (2.14) integrates to give

uθ (r, z = δΩt) ≈ Λδ
√

π/e2J1(2r/δ)(Ωt)−1, Ωt → ∞. (2.15)

Within the tangent cylinder, r < δ, this yields uθ ∼ Λδ (Ωt)−1, as anticipated above.
Well outside the tangent cylinder, on the other hand, we find uθ ∼ Λδ(Ωt)−3/2(r/z)−1/2,
which is also in line with our earlier discussion. Precisely the same results may be
obtained from the exact solution (2.12), (2.13).

In summary, then, energy radiates in all directions, but the kinetic energy density
is highest within the tangent cylinder where it disperses to form two columnar clouds
with centres located at z ∼ ±δΩt and axial length scales which grow as lz ∼ δΩt .
Moreover this behaviour is expected to be common to any initial condition in which
the vorticity is localized in space. (We shall ignore degenerate cases in which Lz

and Hz are both zero.) Note, however, that the percentage of total energy contained
within the tangent cylinder falls as (Ωt)−1, so that eventually the columnar structure
becomes very weak, although the energy density will remain higher than that outside
the cylinder. Note also that this transformation in eddy morphology occurs without
any change in the power spectrum of û, since it is accomplished simply by coordinated
changes in phase.
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3. The evolution of multiple eddies at low Rossby number
Let us now move from a single eddy to a distributed field of vorticity. (We continue

to take Ro � 1 and Ωt of the order of unity.) Here the initial conditions are crucial.
For example, if we start from a sea of discrete, randomly shaped vortex blobs then
each one will disperse in the manner outlined above. Energy will radiate from the
blobs forming a sea of random waves, yet embedded within this field of waves we
would expect to see columnar structures emerge from the initial vortex cores. However,
these columnar eddies will eventually be swamped by the random radiation because
the percentage of energy within them falls as (Ωt)−1, whereas the energy within the
cylinder that has radiated from all the other blobs will increase to a constant that is
related to the volume fraction containing the initial eddies. Nevertheless, the columnar
vortices should be evident for several rotation periods, provided that the eddies are
not too closely packed. (If the eddies are closely packed, however, and the initial
conditions are homogeneous, it is likely that any would-be column will rapidly fall
prey to the random radiation.)

On the other hand, if we start with random Fourier modes without any phase
coherence, we will see no columnar structures emerge on the linear time scale,
simply because there are no blobs to initiate the columns. In other words, the
formation of columnar structures in the examples above is achieved through a careful
rearrangement of the relative phases of the Fourier modes, and if there is no phase
coherence at t = 0 this process cannot occur. The latter initial condition is often (but
by no means always) favoured by those performing numerical experiments, while the
former would be more typical of a laboratory experiment in which the fluid is stirred
up and then left. (Think of the Kármán vortices shed immediately behind a grid in
conventional grid turbulence.) We shall describe just such an experiment in § 5.

4. Speculation about turbulence at Rossby number order unity
So far we have assumed that |u| � Ωl, so that inertia could be ignored by

comparison with the Coriolis force, at least on the time scale of Ω−1. However, let us
now speculate about what happens when we allow for a finite, though modest, amount
of inertia. We shall assume that the Rossby number, Ro = |u|/2Ωl, is not too large,
so that inertial waves still operate, yet not too small, so that the linear and nonlinear
time scales are not too disparate. Then the formation of columnar structures on the
linear time scale, Ω−1, could, in turn, provide a catalyst for nonlinear interactions
since these elongated vortices will tend to interact nonlinearly with the surrounding
vorticity field. This would require the nonlinear time scale, l/|u| , to be close to Ω−1,
so that a significant amount of nonlinear interaction could occur before the columnar
eddies die out. If such a situation did arise we would expect to see the integral scale
lz, defined, say, in terms of the integral of the auto-correlation 〈ux (x) u′

x (x + zêz)〉,
to exhibit a linear growth in time, shadowing the linear growth in the columnar
vortices. (By contrast, l grows as t2/7 in isotropic turbulence.) Interestingly, there is
clear evidence of a linear growth of lz for Ro ∼ 1 in the rotating grid turbulence
experiments of Jacquin et al. (1990).

There is a second mechanism by which linear and nonlinear dynamics could interact
when Ro ∼ 1. Nonlinearity continually reorganizes the vorticity field via vortex
stretching. This rearrangement of the vorticity thus creates a continual sequence of new
initial conditions on which the linear dynamics can operate. If the nonlinear dynamics
tend to favour the formation of coherent vortical structures, then the arguments of
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Figure 2. The apparatus.

§ 2 suggest that inertial waves will systematically elongate those structures along the
rotation axis. Whether or not this does indeed occur requires further investigation.

5. An experiment at Rossby number of order unity
To illustrate these theoretical ideas we have performed a variant of the experiments

of Dickinson & Long (1983) and Morize, Moisy & Rabaud (2005). Dickinson &
Long created a cloud of turbulence in a rotating tank by continuously oscillating a
grid. The turbulence initially occupies only a small part of the tank, but then spreads
in the vertical direction. They observed that, when the rotation is weak, the turbulent
cloud spreads axially at a rate Lz ∼ t1/2, but when rotation is dominant, it spreads
at the faster rate Lz ∼ t . They attributed the weak rotation result to conventional
turbulent diffusion, and the linear growth for strong rotation to inertial waves. We
have repeated their experiment except that, instead of continually oscillating the grid,
we oscillate just once in the vertical direction, creating an initial cloud of turbulence
which is then free to evolve. The tank was 45 cm square by 60 cm deep, filled with
water to a depth of 50 cm (figure 2). We used two grids, with mesh sizes, M, of 5 cm
and 8 cm, 64% porosity, and a bar width, b = M/5. The amplitude of the initial
oscillation was ∼10 cm, which defines the vertical extent of the initial turbulent cloud,
and the average speed of the mesh was 10 cm s−1. Experiments were carried out
at rotation rates of Ω = 1, 1.5 and 2 rad s−1, and the turbulence visualized using
Pearlescence which highlights regions of strong shear (Savaş 1985). The initial Rossby
number, |u|/2Ωb, based on the bar width and the root-mean-square velocity of the
fluid, lies in the range 1.5–3.5. The flow was illuminated with a vertical light sheet
and images of reflected light intensity captured by camera.

Figure 3 shows typical images taken a few rotation periods after initiation of the
turbulence, at 2Ωt = 20 (figure 3a) and 60 (figure 3b), by which time the turbulence
fills the tank. The mesh size was M = 8 cm and the rotation rate 2 rad s−1. At
2Ωt = 20, the turbulent cloud has ‘a streaky’ appearance characterized by elongated
columnar structures, individually reminiscent of the structure seen in figure 1.

We have tracked the evolution of these columnar structures in a sequence of
experiments for all three rotation rates and for both mesh sizes. The location of the
leading edge of the structures was determined by eye to an accuracy of better than
±5mm. It is clear that we see the evolution of identifiable columnar structures rather
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(a) (b)

Figure 3. Images of the flow taken at different times after initiation of the turbulence.
(a) 2Ωt = 20, (b) 2Ωt = 60. The mesh size was M = 8 cm and the rotation rate 2 rad s−1. Note
that columnar vortices are still evident at 2Ωt = 60. The images are 42 cm square.
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Figure 4. The distance travelled by the leading edge of typical columnar structures as a
function of time. In (b) �z and t are normalized by bar size, b, and Ω−1, respectively. �

(M = 8 cm, Ω = 2 rad s−1), � (M = 8 cm, Ω = 1.5 rad s−1), + (M = 8 cm, Ω = 1 rad s−1), �

(M = 5 cm, Ω = 2 rad s−1), × (M = 5 cm, Ω = 1.5 rad s), � (M = 5 cm, Ω = 1 rad s−1).

than the random superposition of inertial waves from the turbulent cloud. Individual
structures maintain their morphology from one frame to the next and propagate
vertically downwards in a manner similar to that seen in § 2. Structures with a larger
horizontal length scale emerge first from the initial cloud of turbulence and propagate
downwards more quickly than the smaller structures that emerge later.

Figure 4(a) shows the distance travelled, �z, by the leading edge of the columnar
structures as a function of time, each set of data being an ensemble of three nominally
identical experiments. The growth in each case is clearly linear, consistent with linear
wave propagation and the results of Dickinson & Long (1983). To confirm that
these are indeed inertial waves, figure 4(b) shows the same data but with distance
normalized by bar size and time normalized by rotation rate. According to expression
(1.1) for the group velocity of inertial waves, such a normalization should collapse
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the data from all of the experiments, and indeed it does. There is no doubt, therefore,
that these columnar structures are the manifestation of linear inertial waves.

Turning now to the image in figure 3(b) we see that, at 2Ωt = 60, columnar vortices
are evident, though immersed in a sea of turbulence. Since Ro ∼ 1 we expect that
both linear (wave-like) and nonlinear (vortex stretching) processes are occurring here.
This suggests, but does not prove, that linear mechanisms continue to shape the
turbulence even in the presence of nonlinear dynamics.

6. Conclusions
The short-term evolution of an inhomogeneous cloud of rotating turbulence, and

the surrounding flow, is dominated by the growth of columnar structures, and these
grow by inertial wave propagation in accordance with linear theory. The significance
of this for homogeneous turbulence, or for turbulence evolving for times much longer
than the rotation period, remains unclear. We may anticipate, however, that linear
mechanisms will be more important when the initial conditions are characterized by
coherent structures than by a structureless sea of vorticity. The distinction between
coherent structures and a random sea is embodied in the phase information which we
traditionally discard when characterizing turbulence in terms of spectral quantities.

The authors would like to thank C. Cambon, F. Siso-Nadal and L. Smith for their
many useful comments and thank W. Graham who pointed out that the different
decay laws inside and outside the tangent cylinder can be obtained by stationary
phase.
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